
1

Supporting 
Component-Based 
Development with 

Hierarchical Scheduling

Introduction

 Partitioning into multiple simpler subsystems

 Lower complexity;

 Component reuse;

 Team-base development;

 Outsourcing.

Introduction

 Partitioning into multiple simpler subsystems

 Lower complexity;

 Component reuse;

 Team-base development;

 Outsourcing.

Integration

Introduction

 This lesson: we will look at the problem of supporting
component-based development from a real-time systems
perspective

 RTOS mechanisms/scheduling algorithms to support temporal
isolation among independently developed applications
(software components);

 Real-time analysis to ensure predictability in executing the
software components.

 In general, supporting component-based development
requires a widespread view including software
engineering, system modeling, programming models,
component abstraction, etc…

Hierarchical Scheduling Framework

Introduction

Resource 
Reservation

Server
1

Server
2

Server
3

Server
n

Introduction

Integration 
without
reservations

Automotive Example: Engine Control + ABS



2

Introduction

Automotive Example: Engine Control + ABS

Integration 
with
reservations

Predictable interferences

Introduction

Shared Resources

CPU

server
Ready queue

scheduler

1

3

server

server

2b

2a

2

3

R

Tasks are usually not independent: they share
resources!
Examples:

Data Structures, Peripheral Devices, Common
Memory Areas

HSF

 Scheduling mechanisms needed to implement the
Hierarchical Scheduling Framework (HSF)

 Resource reservation server able to guarantee hard
real-time applications;

 Resource sharing protocol supporting resources
shared among tasks running upon different
reservation servers.

Bounded‐Delay Reservation for Open Environment 
(BROE)

Resource Reservation

HARD reservation

It guarantees that the served application receives
at most a budget Q every period P.

server

8 12

5

0 2 4 6 8 10

qs

12 14 16 18 20 22 24 26

24204 16

Hard-CBS Server

The budget is 
recharged at the 
server deadline

 Resource sharing may break isolation:

Problems with Reservations

1

deadline miss

server
S2

2

wait

normal blocking due 
to reasource sharing

extra blocking due to 
budget exhaustion

Ts



3

 Resource sharing may break isolation:

Problems with Reservations

1

deadline miss

server
S2

2

wait

Ts

The major problem is that 
the resource is locked but 
no task is actually using it

Overrun W/ Payback

A possible solution: When the budget exhausts inside a critical 
section, do nothing. Payback at the next budget 
replenishment.

1

server
S2

2

Ts

wait

Budget payback

Isolation is broken!

The budget goes negative

Note that the worst-case bandwidth consumption does not change

Check and recharge

If (qs  k) then enter, else recharge the budget at full value 
and proportionally postpone the server deadline.

checking point

1

server
S2

2

BROE

Note that off-line we must guarantee that Qs  max{k}.

BROE Design Goals

Overcome to the problem of budget depletion inside
critical sections

• Avoiding budget overruns;

• Ensuring bandwidth isolation (i.e., each server 

must consume no more than ߙ ൌ
ொ

௉
of the processor 

bandwidth);

• Guaranteeing a bounded-delay partition to the 
served tasks.

BROE

BROE: budget check

 Consider a task 1 accessing a resource ܴ௞ having
k = 2

checking point

server

1

൒ ௞q(t) = 2 ൒ߜ ௞ߜ = 2

BROE: budget check

 Consider a task 1 accessing a resource ܴ௞ having
k = 2

checking point

server

1

൏ ௞q(t) = 1 ൏ߜ ௞ߜ = 2

BROE avoids 
budget overruns 
by performing 

the budget check



4

BROE: budget check

 Consider a task 1 accessing a resource ܴ௞ having
k = 2

checking point

server

1

൏ ௞q(t) = 1 ൏ߜ ௞ߜ = 2

?

?

BROE Design Goals

Overcome to the problem of budget depletion inside
critical sections

• Avoiding budget overruns;

• Ensuring bandwidth isolation (i.e., each server 

must consume no more than ߙ ൌ
ொ

௉
of the processor 

bandwidth);

• Guaranteeing a bounded-delay partition to the 
served tasks.

BROE

 When the budget is not enough to complete the
critical section, BROE performs a full budget
replenishment;

 To not violate the server bandwidth, the budget
replenishment must be reflected in a proportional
deadline postponement

BROE: bandwidth guarantee

 The idea of proportional deadline comes from a
property of EDF scheduling with implicit deadlines;

 Suppose ߬௜ be schedulable with bandwidth
(utilization) ௜ߙ = 0.5

߬௜

8

12

ߙ ൅෍ߙ 	൑ ௜ߙ1 ൅෍ߙ௝
௝ஷ௜

	൑ 1

BROE: bandwidth guarantee

 The idea of proportional deadline comes from a
property of EDF scheduling with implicit deadlines;

 Suppose ߬௜ be schedulable with bandwidth
(utilization) ௜ߙ = 0.5

12

20

߬௜

ߙ ൅෍ߙ 	൑ ௜ߙ1 ൅෍ߙ௝
௝ஷ௜

	൑ 1

BROE: bandwidth guarantee

 Consider a task 1 accessing a resource ܴ௞ having
k = 3. Task 1 executes on a BROE server
configured with Q=5 and P=10

server

1

BROE: bandwidth guarantee

2



5

 Consider a task 1 accessing a resource ܴ௞ having
k = 3. Task 1 executes on a BROE server
configured with Q=5 and P=10

server

1

BROE: bandwidth guarantee

2

Budget 
recharged of 3 

units

Proportional 
deadline shift of 
ଷ

ఈ
ൌ

ଷ

଴.ହ
ൌ 6 units

 Consider a task 1 accessing a resource ܴ௞ having
k = 3. Task 1 executes on a BROE server
configured with Q=5 and P=10

server

1

BROE: bandwidth guarantee

2

߬
According to EDF, 
߬ଵis descheduled

 Consider a task 1 accessing a resource ܴ௞ having
k = 3. Task 1 executes on a BROE server
configured with Q=5 and P=10

server

1

BROE: bandwidth guarantee

2

16

The server has executed 8 
units in a window of 16 
units. The bandwidth 
଼

ଵ଺
ൌ 0.5 has not been 

violated!

BROE Design Goals

Overcome to the problem of budget depletion inside
critical sections

• Avoiding budget overruns;

• Ensuring bandwidth isolation (i.e., each server 

must consume no more than ߙ ൌ
ொ

௉
of the processor 

bandwidth);

• Guaranteeing a bounded-delay partition to the 
served tasks.

BROE

 To guarantee real-time workload executing upon a
reservation server, the server must ensure a
bounded-delay service

BROE: bounded-delay

ܳ ܳ

ܲ

∆ൌ 2ሺܲ െ ܳሻ

 The budget replenishment and the corresponding
deadline postponement can easily result in a
violation of the worst-case delay ∆ൌ 2ሺܲ െ ܳሻ, if
not properly handled

BROE: bounded-delay



6

BROE: bounded-delay

server

1

 Consider a BROE server with Q=4 and P=8

 ߬ଵ accesses a resource having ߜ ൌ 2

BROE: bounded-delay

server

1

 Consider a BROE server with Q=4 and P=8

 ߬ଵ accesses a resource having ߜ ൌ 2

 Consider a BROE server with Q=4 and P=8

 ߬ଵ accesses a resource having ߜ ൌ 2

 The worst-case delay ∆ൌ 2ሺܲ െ ܳሻ is violated!

BROE: bounded-delay

server

1
ܲ ൌ 8 ܲ ൌ 8

11 ൐ 2 ܲ െ ܳ ൌ 8

This is only an example, in the worst‐case the delay can 
be potentially unbounded!

 How to solve this problem?

 The idea is to avoid to let the server execute “too
much earlier” with respect to its deadline, after a
budget replenishment

BROE: bounded-delay

server

1
ܲ ൌ 8 ܲ ൌ 8

11 ൐ 2 ܲ െ ܳ ൌ 8

 How to solve this problem?

 The idea is to avoid to let the server execute “too
much earlier” with respect to its deadline, after a
budget replenishment

BROE: bounded-delay

server

1
ܲ ൌ 8 ܲ ൌ 8

The slack is greater than (P-Q)
This execution
must be delayed

 To guarantee a bounded-delay of ∆ൌ 2 ܲ െ ܳ ,
BROE imposes an explicit server suspension

BROE: bounded-delay

server

1
ܲ ൌ 8 ܲ ൌ 8



7

 To guarantee a bounded-delay of ∆ൌ 2 ܲ െ ܳ ,
BROE imposes an explicit server suspension

BROE: bounded-delay

server

1
ܲ ൌ 8

explicit server suspension

ܲ ൌ 8

∆ൌ 2 ܲ െ ܳ

 If the server is “not executing too earlier”, it is not
possible to violate the worst-case delay ∆

BROE: bounded-delay

server

1

6 ൏ ∆ൌ 2 ܲ െ ܳ =8

no server suspension 
is needed

Depending on the execution state, BROE decides to 
suspend the server or not

BROE Design Goals

Overcome to the problem of budget depletion inside
critical sections

• Avoiding budget overruns;

• Ensuring bandwidth isolation (i.e., each server 

must consume no more than ߙ ൌ
ொ

௉
of the processor 

bandwidth);

• Guaranteeing a bounded-delay partition to the 
served tasks.

BROE

BROE Resource Access Policy

Consider a BROE server having period P and budget Q. The
current budget at time t is denoted as q(t).

When a task wishes to access a resource ܴ௞ at time t:

 If ݍ ݐ ൒ ,௞ߜ	 then enter the critical section (there is enough
budget)

 Else, compute a recharging time ௥ݐ ൌ ݀	 െ	
௤ሺ௧ሻ

ఈ

 If ݐ ൏ ௥ݐ , the server is suspended until time ௥ݐ , the budget is
replenished to Q and the deadline is shifted to ݀ ൌ ௥ݐ ൅ ܲ

 Otherwise, the budget is immediately replenished to Q and
݀ ൌ ௥ݐ ൅ ܲ

BROE

 The BROE resource access policy can work only with EDF
scheduling due to the proportional deadline shift. The
support for FP scheduling of the servers is currently an
open problem;

 In order to perform the budget check, BROE requires the
specification of a worst-case holding time for the shared
resources;

 BROE is intrinsically designed for the worst-case: the
budget check can cause a scheduling decision that could be
unnecessary.

BROE: constraints

 The BROE server is a scheduling mechanism providing
resource reservation including the support for shared
resources

 Hard reservation implementing the Hard-CBS algorithm;

 Resource access protocol that guarantees both bandwidth
isolation and bounded-delay to the served application.

BROE: recap



8

 In general, the BROE budget check has to be performed
using the Resource Holding Time (RHT) of a shared
resource;

 RHT = budget consumed from the lock of a resource until its
unlock

Resource Holding Time

 In general, the BROE budget check has to be performed
using the Resource Holding Time (RHT) of a shared
resource;

 RHT = budget consumed from the lock of a resource until its
unlock

Resource Holding Time

1

2
lock unlock

RHT

s

 Interference from high-priority task has to be accounted in
the budget consumed when a resource is locked

Resource Holding Time

1

2
lock unlocks

server
budget

 RHT = Critical Section WCET + Worst-case Interference

 The interference is caused by the task preemptions

Resource Holding Time

1

2
lock unlock

RHT

s

 If resources are accessed in a non-preemptive manner, the
RHT is equal to the worst-case critical section length;

 Trade-off: lower threshold for the budget check, but greater
task blocking due to non-preemptive blocking

Resource Holding Time

1

2
lock unlock

RHT

non-preemptive blocking

s

Implementation Issues

 Goal: Implementation of a two-level Hierarchical Scheduling
Framework using the BROE algorithm.

Server scheduling 
according to EDF



9

Implementation Issues

 Goal: Implementation of a two-level Hierarchical Scheduling
Framework using the BROE algorithm.

BROE Server: 
Hard‐CBS + resource 

access policy

Implementation Issues

 Goal: Implementation of a two-level Hierarchical Scheduling
Framework using the BROE algorithm.

Local scheduler: can 
be either EDF and FP

Implementation Issues

 Multi-layer scheduling infrastructure

EDF Scheduler

Hard CBS

BROE Resource Access Policy

EDF/FP Scheduler

Classical Resource Sharing

CPU

Task Task Task Task

Implementation Issues

 Ready queue structure

VCPU 1

VCPU 2

VCPU 3

VCPU n

TASK 
1.1

TASK 
1.2

TASK 
1.3

TASK 
1.4

TASK 
2.1

TASK 
2.2

TASK 
3.1

TASK 
n.1

TASK 
n.2

TASK 
n.3

EDF 
order

FP 
order

EDF 
order

Implementation Issues

 OS with tick: the kernel comes into operation periodically,
even if there are no scheduling events to be handled;

 OS tick-less: the kernel come into operation only when is
needed, i.e., in correspondence of scheduling events.

 Example: budget management for reservation

 We look at tick-less RTOS implementation on small
microcontrollers.

Implementation Issues

 EDF scheduling implementation: need for a timing reference
having both

 High-resolution;

 Long life-time (to handle absolute deadlines).

Require 64 bit data structure for time representation

 Deal with 64 bit data structures in small microcontrollers
imposes a significant overhead in the scheduler
implementation.



10

Implementation Issues

 Circular timer: avoid an absolute timing reference. The
notion of time is relative with respect to a free running timer.

 Let T the lifetime of the free running timer.

 It is possible to handle temporal events having a maximum
spread of T/2.

Implementation Issues

 Consider two events ݁ଵ and ݁ଶ.

 Let ሺ݁ଵሻݐ be the absolute time of an event, and ሺ݁ଵሻݎ its
relative representation by using the circular timer.

 To compare two events having ሺ݁ଵሻݐ 	െ ሺ݁ଶሻݐ ൏ ܶ/2

 If ሺݎሺ݁ଵሻ െ ሺ݁ଶሻሻݎ ൐ 0 then ሺ݁ଵሻݐ ൐ ሺ݁ଶሻݐ

 If ሺݎሺ݁ଵሻ െ ሺ݁ଶሻሻݎ ൏ 0 then ሺ݁ଵሻݐ ൏ ሺ݁ଶሻݐ

 If ሺݎሺ݁ଵሻ െ ሺ݁ଶሻሻݎ ൌൌ 0 then ሺ݁ଵሻݐ ൌ ሺ݁ଶሻݐ

Implementation Issues

 Warning: a relative representation becomes inconsistent
after T/2!

 Inactive servers: It is necessary to perform a periodic check
of inconsistent deadlines;

 A special timer has to be reserved for that job.

The implementation of EDF requires 2 timers:
• Free running timer
• Periodic timer for deadline consistency

Implementation Issues

 Hard-CBS Server: its implementation requires to manage
two main operations

 Budget enforcement;

 Budget recharge.

server

8 12

5

0 2 4 6 8 10

qs

12 14 16 18 20 22 24 26

24204 16

Implementation Issues

 Budget enforcement: when then server starts to execute at
time ,ݐ set up an one-shot timer with the current budget .ሻݐሺݍ

 If a preemption occurs, the timer is reconfigured; otherwise,
it will fire to notify a budget exhaustion.

server

8 12

5

0 2 4 6 8 10

qs

12 14 16 18 20 22 24 26

24204 16

Implementation Issues

 Budget recharge: when a server exhaust its budget, it has
to be suspended until its deadline, where the budget will be
recharged.

 A deadline-ordered queue of suspended server has to be
provided. Another one-shot timer triggers the budget
recharge event for the first server in the queue.

server

8 12

5

0 2 4 6 8 10

qs

12 14 16 18 20 22 24 26

24204 16



11

Implementation Issues

 Budget recharge: when a server exhaust its budget, it has
to be suspended until its deadline, where the budget will be
recharged.

 A deadline-ordered queue of suspended server has to be
provided. Another one-shot timer triggers the budget
recharge event for the first server in the queue.

VCPU 1
d=10

VCPU 3
d=40

VCPU 6
d=120

One‐Shot 
Timer 
d=10

Queue of suspended servers
waiting for budget replenishment

Implementation Issues

 Hard-CBS Server: its implementation requires to manage
two main operations

 Budget enforcement;

 Budget recharge.

The implementation of the Hard CBS requires 2 
timers:
• One‐shot timer for budget enforcement
• One‐shot timer for budget recharge

Implementation Issues

 BROE server suspension: can be implemented exploiting
the budget recharge queue

 “If ݐ ൏ ,௥ݐ the server is suspended until time ”௥ݐ

VCPU 1
d=10

VCPU 3
d=40

VCPU 6
d=120

One‐Shot 
Timer 
d=10

Queue of suspended servers
waiting for budget replenishment

Implementation Issues

 BROE server suspension: can be implemented exploiting
the budget recharge queue

 “If ݐ ൏ ,௥ݐ the server is suspended until time ”௥ݐ

VCPU 1
d=10

VCPU 3
d=40

VCPU 6
d=120

One‐Shot 
Timer 
d=10

Queue of suspended servers
waiting for budget replenishment

VCPU 2
50=࢚࢘

Thank you!
Alessandro Biondi 
alessandro.biondi@sssup.it


